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A recent result for the curl of forces on ions under steady-state current in atomic wires with noninteracting
electrons is extended to generalized forces on classical degrees of freedom in the presence of mean-field
electron-electron screening. Current is described within a generic multiterminal picture, forces within the
Ehrenfest approximation, and screening within an adiabatic, but not necessarily spatially local, mean-field
picture.
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I. INTRODUCTION

Electrical current flow exerts forces on the atoms in a
conductor, in the same way in which a river pushes rocks in
its way. While their formal description requires a careful
definition, it has long been clear that these forces lie at the
heart of a class of phenomena, known as electromigration:
the current-driven motion and flow of atoms in a conductor.1

Nonetheless, a fundamental question about these forces was,
until recently, not entirely clear: are they conservative or not,
with arguments both ways.1–4 The interest in these forces is
partly physical and partly practical: in nanoscale conductors,
where the current densities can be huge, these forces can,
correspondingly, be large, opening up the question of how
these corrections to ordinary interatomic forces affect the
structure and functionality of atomic-scale devices.5–7

Recently it was shown that current-induced forces are,
indeed, not conservative, by evaluating explicitly their curl
under steady-state conditions,8 and that, therefore, these
forces can do net work on the atoms around closed paths.
This finding is of interest9,10 for several reasons. First, as was
shown in Ref. 8, the nonconservative forces constitute the
basis for a current-driven atomic-scale motor. Second, the
work done by these forces constitutes a new mechanism for
energy transfer from current-carrying electrons into the
atomic motion, whose implications for phenomena such as
electromigration11,12 and local heating13,14 in nanowires, and
for the stability of these systems under current, define a fresh
direction for research, with work currently under way.

However, the arguments in Ref. 8 were for noninteracting
electrons. The purpose of this paper is to extend the analyti-
cal result for the curl of the steady-state force on an ion in a
current-carrying nanowire to arbitrary generalized degrees of
freedom and to situations with mean-field electron-electron
interactions. To this end, we will also extend the multiple-
probe open-boundary method in Ref. 15 to multiple elec-
trodes. We illustrate the self-consistent result for the curl
with a model example, which shows that while screening
reduces the curl, it does not, in general, eliminate it alto-
gether.

Section II defines forces for the purposes of the present
discussion. Section III introduces the multiple-lead self-
consistent steady state. Section IV makes the above exten-

sions to the curl formula. The model example is in Sec. V
and we conclude with a summary in Sec. VI.

II. DEFINITION OF FORCES

For our present purposes, we describe electron-ion inter-
actions at the level of the Ehrenfest approximation. In this
approximation, electrons are treated quantum mechanically,
while ions are treated as classical point particles, with coor-
dinates �RI�, where I�n� denotes an ion, n, and a direction,
�. We denote the classical coordinates collectively by

R � �RI� . �1�

Electrons evolve according to the time-dependent
Schrödinger equation, within a mean-field one-electron pic-
ture of electron-electron interactions, defined by the follow-
ing specifications. It will be convenient to work with a dis-
crete orthonormal real-space basis, ��i��, such as a
computational grid or an orthogonal tight-binding model,16,17

�i�j� = �ij . �2�

Electron spin can be included by treating i� l� as a compos-
ite index, where l labels a lattice site �or atomic orbital� and
� labels the spin state at that site �orbital�. We then assume
that electrons, either in a time-dependent or in a steady-state

situation, see a one-electron Hamiltonian, Ĥ, composed of
two parts,

Ĥ = Ĥ��̂,R� = ĥ�R� + v̂��̂,R� . �3�

Here, ĥ�R� describes noninteracting electrons, interacting
with the classical degrees of freedom R via the electron-ion
interaction. v̂��̂ ,R� is a Hermitian mean-field one-electron
potential, about which we assume that it is derived from
some model functional, E��̂ ,R�, of the instantaneous one-
electron density matrix �DM� �̂ via the prescription

vij = vij��̂,R� = � jiE��̂,R�, � ji �
�

�� ji
, �4�

where Aij = �i�Â�j� for a one-electron operator Â. We may
assume, for generality, that Hij is not diagonal in the spin
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index �. The explicit dependence of E��̂ ,R� on R may arise
with anchored basis sets16,17 and is allowed here for general-
ity.

A convenient way to obtain the desired quantum-classical
description is to start from a suitable quantum-classical
Lagrangian.16,17 Then the ions evolve under Newtonian
equations of motion, with forces, due to the interaction with
the electrons, given by

FI = Tr� f̂ I�R��̂� − �IE��̂,R� , �5�

where

f̂ I�R� = − �Iĥ�R�, �I �
�

�RI
. �6�

This mixed quantum-classical description constitutes a
mean-field treatment of electron-ion interactions, which sup-
presses both quantum-mechanical effects in the motion of
ions and electron-ion correlations. This suppression results in
known limitations of Ehrenfest dynamics, namely, that it
suppresses the spontaneous deexcitation of electrons by ex-
citing phonons. Thus, for example, Ehrenfest dynamics is not
suitable for a description of Joule heating.18 In the context of
nonconservative forces under current, however, these limita-
tions are not fatal for reasons discussed in Ref. 8: the rate of
work by the nonconservative forces and the rates of dissipa-
tion due to inelastic scattering scale differently with atomic
mass, and in the limit of heavy ions the former dominates.
Thus, for our present purposes we adopt the Ehrenfest pic-
ture of electron-ion interactions.

Physically, Ehrenfest dynamics becomes correct in the
limit of sufficiently massive or energetic ions. If the under-
lying quantum-mechanical ionic probability density is suffi-
ciently narrow, then the classical coordinates and forces in
Ehrenfest dynamics can be thought of as describing approxi-
mately the motion of the centroid of this probability density
over restricted time scales.

III. CURRENT-CARRYING STEADY STATE

We now consider current-carrying nanostructures under
steady-state conditions, with the aid of the setup in Fig. 1. It
shows a central region, C, connected to two or more elec-
trodes or leads labeled by an index �. We will think of the
leads as being finite though possibly long. We will use label
S to refer collectively to the system composed of these com-
ponents,

S � C � ��� . �7�

To open the system to electron baths, we follow the construc-
tion in Ref. 15 and imagine that each site in S is weakly
coupled, through a matrix element �, to an external probe
with an energy-independent surface density of states d and a
retarded surface Green’s function g+=−i�d. Probes coupled
to lead � are maintained at electrochemical potential ��,
with a corresponding Fermi-Dirac distribution f��E�, and
probes coupled to C are maintained at electrochemical po-
tential �C, with a corresponding Fermi-Dirac distribution
fC�E�. We will denote the collection of electrochemical po-

tentials and corresponding Fermi-Dirac distributions by

� � ��C,�����, f � �fC,�f��� . �8�

Then, either by solving the Lippmann-Schwinger equa-
tion for stationary wave functions originating from the exter-
nal probes and propagating through the system or, equiva-
lently, by the method of nonequilibrium Green’s functions,
the steady-state one-electron DM in S is given by

�̂S = 	
−	

+	

�̂S�E�dE, �̂S�E� = ĜS
+�E�
̂��E�ĜS

−�E� , �9�

where

ĜS
��E� = 
�E � i�P̂S − ĤS�−1,  = ��2d �10�

are the retarded and advanced Green’s functions for S and19


̂��E� =


�
fC�E�P̂C +



�
�
�

f��E�P̂�. �11�

Above, ĤS is the one-electron Hamiltonian in S, and we have
introduced the projection operators

P̂q = �
i�q

�i��i�, q = C,��� , �12�

with

P̂S = P̂C + �
�

P̂�. �13�

ĤS is understood to be self-consistent in the sense ĤS

= ĤS��̂ ,R�, with the functional Ĥ��̂ ,R� defined in Eq. �3�. It
will be convenient to write Eq. �9� as

�̂S�E� = fC�E�D̂C�E� + �
�

f��E�D̂��E� , �14�

where

D̂q�E� =


�
ĜS

+�E�P̂qĜS
−�E�, q = C,��� , �15�

with

C

f α
α

α

RI

µ
f

µ
C

C

FIG. 1. The setup used to generate a current-carrying steady
state in a nanostructure, C, between a set of electrochemically bi-
ased electrodes, ���. The details are discussed in the text.
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D̂C�E� + �
�

D̂��E� =
ĜS

−�E� − ĜS
+�E�

2�i
� D̂S�E� . �16�

In the last equation, D̂S�E� is the density-of-states operator
for system S, embedded in the sea of external probes.

For any finite  and lead length, this construction gives an
approximation to the usual Landauer-Büttiker setup, with in-
finitely long leads. This approximation, however, is in itself a
perfectly admissible transport steady state. In this picture, the
sea of external probes, which sets the collection of electro-
chemical potentials �, plays the role of an extended nonequi-
librium environment, undergoing a long-lived process of
equilibration through the finite system S. It is shown in the
Appendix how the usual picture, with infinitely long leads,
can be recovered from the present setup as a limiting case.

To obtain a well-defined problem, we now make one fur-
ther stipulation, namely, that the model DM functional E de-
pends only on �̂S �for a given R� and not on the DM in the
extended environment: E=E��̂S ,R�. This stipulation enables
us to treat E as a well-defined finite quantity. The self-

consistent part of the Hamiltonian Ĥ, v̂, is now restricted to
and depends solely on the DM in S: vij =vij��̂S ,R�; vij�0
only if i�S and j�S. While this makes the problem, in
principle, soluble exactly, it eliminates screening effects in
the extended environment outside S: there are no self-
consistent adjustments to the one-electron potential in the
environment, and both � and f are independent of the
electron-electron interactions in S. This limitation can be
questioned on fundamental grounds.20 However, our ansatz
does retain certain key effects: the formation of self-
consistent resistivity dipoles across scattering centers in S
and, in particular, in C, under current, as well as long-range
self-consistent potential shifts within the leads ���.

In the model of steady-state conduction thus obtained, the
self-consistent steady-state DM in S is, ultimately, a function
of the inputs R and �, �̂S= �̂S�R ,��. By placing this DM in
Eq. �5�, we obtain the steady-state force exerted on degree of
freedom I by the current-carrying electrons21

FI = FI�R,�� = Tr� f̂ I�R��̂S�R,��� − �IE��̂S,R���̂S=�̂S�R,��.

�17�

Here, we have made the further assumption that f̂ I is suffi-
ciently short ranged for the first term in Eq. �17� to invoke
only the DM in S. However, this assumption is not restrictive

as, physically, ĥ�R� is short ranged in real space.
The limitations of the above mean-field picture of

electron-ion and electron-electron interactions are not a sub-
ject of this paper. Instead, here we consider the properties of
the steady-state force FI�R ,��, thus obtained, and, in particu-
lar, the question of whether or not this force is conservative.
Although we will continue to speak of ions, the discussion
applies to arbitrary classical degrees of freedom �I�, with
generalized coordinates �RI�, provided that the corresponding
generalized forces can be expressed by Eq. �17�. We observe
also that Eq. �17� does not make a decomposition of the
force into direct and wind components.1

IV. CURL OF THE FORCE

In Ref. 8, it was shown that current-induced forces are not
conservative by examining the curl of the force on an ion in
the two-terminal Landauer steady state for noninteracting
electrons. Our task now is to do the same within the present
multiple-terminal self-consistent picture. We will need sev-
eral preliminary results.

First, we note that, with �̂S= �̂S�R ,��, the self-consistent
steady-state Hamiltonian in S is also, ultimately, a function
of R and �,

ĤS = ĤS�R,�� = ĤS
�̂S�R,��,R� , �18�

and we define the screened force operator

F̂I = F̂I�R,�� = − �IĤS�R,�� = − �Iĥ�R� − �Iv̂�R,�� ,

�19�

where v̂�R ,��= v̂
�̂S�R ,�� ,R�. F̂I measures the total change
in the self-consistent Hamiltonian upon varying degree of
freedom I. Next, by use of the Dyson equation, for �̂S�E�
= �̂S�R ,� ,E� from Eq. �9� we have

− �I�̂S�E� = ĜS
+�E�F̂I�̂S�E� + �̂S�E�F̂IĜS

−�E� . �20�

Next, we consider the second term in Eq. �17�, call it
�FI�R ,��,

− �FI�R,�� = �IE��̂S,R���̂S=�̂S�R,��. �21�

We have

− �J�FI�R,�� = �J�IE��̂S,R���̂S=�̂S�R,��

+ �
i,j

�ij�IE��̂S,R���̂S=�̂S�R,���J�Sij
�R,��

= �J�IE��̂S,R���̂S=�̂S�R,��

+ �
i,j

�Iv ji��̂S,R���̂S=�̂S�R,���J�Sij
�R,�� .

�22�

Finally, for v ji�R ,��=v ji
�̂S�R ,�� ,R� we have

�Iv ji�R,�� = �Iv ji��̂S,R���̂S=�̂S�R,��

+ �
k,l

�klv ji��̂S,R���̂S=�̂S�R,���I�Skl
�R,��

= �Iv ji��̂S,R���̂S=�̂S�R,��

+ �
k,l

�kl�ijE��̂S,R���̂S=�̂S�R,���I�Skl
�R,�� .

�23�

Putting these results together, we obtain

�IJ = �IFJ�R,�� − �JFI�R,��

= 	
−	

+	

�IJ�E�dE, �IJ�E�

= 4� Im Tr�F̂ID̂S�E�F̂J�̂S�E�� , �24�
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where the density-of-states operator D̂S�E� was introduced in
Eq. �16�. Equation �24� is our central result. It extends the
earlier finding in Ref. 8 to the present multiple-terminal self-
consistent steady state. The key difference is the replacement

of the bare force operator f̂ I in the curl expression by the

screened force operator F̂I.
At equilibrium, �q=�eql, fq�E�= feql�E�, q=C , ���. Then

�̂S�E�= feql�E�D̂S�E� from Eq. �14�, and �IJ vanishes identi-
cally. This is a reflection of the fact that forces at equilibrium
are conservative. For small departures from equilibrium, the
curl expression can be linearized as follows. We set �C
=�eql, ��=�C+��� and consider zero electronic tempera-
ture when the Fermi-Dirac distribution is a step function.
Then

�IJ = 4� Im Tr�F̂ID̂S��eql�F̂J��̂S�, ��̂S = �
�

���D̂���eql� ,

�25�

with all quantities now evaluated for the self-consistent equi-
librium system.

The conclusion, as in the case of noninteracting electrons,
is that, since �IJ does not vanish identically, forces in the
multiterminal self-consistent steady state above are, in gen-
eral, not conservative.

V. EXAMPLE

For our example, we revisit the geometry considered in
Ref. 8: an atomic chain with a bend, shown in Fig. 2. Our
aims are to calculate the curl of the force on the corner atom,
labeled 0, without and with self-consistency, and compare
the two results.

The chain is infinite and perfect. The bend angle is 90°.
We adopt a spin-degenerate single-orbital nearest-neighbor
orthogonal tight-binding model with a hopping integral H
�0. Below, �l� will denote the orbital basis state at site l in
the chain. Operators will be spinless, and a spin-degeneracy
factor of 2 will be included in the final results.

The two electrochemical potentials for the two-terminal
assembly are �L,R=�eql�eV /2, where �eql sets the band fill-
ing � in the perfect chain, with �=1 corresponding to a com-

pletely filled band. Self-consistency takes the form of local
charge neutrality, imposed on the corner atom only. The only
parameter, varied to achieve self-consistency, is the onsite
energy, E0, on the corner atom. When the corner atom is in
its ideal position, all onsite energies are equal and set to zero.
This model corresponds to the functional E��̂�=U��0��̂�0�
−��2 /2 in the limit U→	.

With the choice of axes in Fig. 2, for the corner atom in
the ideal position we have

F̂x = H���0��1� + �1��0�� + �0���0� , �26�

F̂y = − H���0��− 1� + �− 1��0�� − �0���0� . �27�

The terms in parentheses in each equation give the bare force
operator, the second term in each case is the self-consistent
part of the screened force operator, and H� denotes the de-
rivative of the hopping integral with distance. To evaluate �,
we imagine displacing the corner atom through a small
amount �y along y and require it to acquire an onsite energy
shift �E0, such as to prevent the atom from acquiring any
extra charge, whereupon �=�E0 /�y. To proceed further, we
specialize to the small-bias regime in Eq. �25�. Then, invok-
ing linear response theory, � is given by the condition


c

�0�Ĝ�z�F̂yĜ�z��0�dz = 0, �28�

where Ĝ�z� is the Green’s function for an infinite perfect
chain and the simple-closed contour c cuts the real energy
axis at �eql and at a second energy, below the bottom of the

band �−2�H��. For Im z�0, Ĝ�z� is given by

�k�Ĝ�z��l� =

� z − �z2 − 4H2

2H
��l−k�

�z2 − 4H2
, �29�

where the square root is defined by �r2e2i�=rei�, r�0, 0
����. At other energies, the Green’s function is obtained

from Ĝ�z��= Ĝ†�z�. Then

� = − 2H��1 −
2�

�
� , �30�

where � is related to �eql through �eql=2H cos � and to the
band filling through �=� /�.

The operators D̂���eql� in Eq. �25� are now given by

�k�D̂L,R��eql��l� = −
1

2�

e�i�k−l��

2H sin �
. �31�

Then for the curl of the force on the corner atom, in the
small-bias limit 
Eq. �25��, in the non-self-consistent case
��=0�, we obtain, including a spin-degeneracy factor of 2,

�xy
nsc =

4eV

�

H�2

H2

cos �

sin �
, �32�

while in the self-consistent case we find22

−eV/2

µeql+eV/2

µR = µeql

V

x

y

−1

10

µL=

FIG. 2. The two-terminal geometry for the example in the
text.
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�xy
sc =

4eV

�

H�2

H2

1

sin �
�cos � − 1 +

2�

�
� . �33�

These results are plotted in Fig. 3. Both vanish for a half-
filled band ��=� /2�. For fractional band fillings, in the re-
gion, say, ��1 /3, �xy

sc /�xy
nsc�1 /3. Thus, screening reduces

the curl considerably, but it does not eliminate it altogether.

VI. SUMMARY

In this paper, the result for the curl of current-induced
forces under steady-state transport from Ref. 8 has been ex-
tended in three ways: we have considered a general multiter-
minal assembly, a general one-electron self-consistent de-
scription of screening, and we have kept the discussion
sufficiently general, to make the results applicable to arbi-
trary classical degrees of freedom, interacting with the
current-carrying electrons. An example of such generalized
coordinates are magnetic degrees of freedom in spin-
polarized nanowires.4 The key finding 
Eq. �24�� is that the
generalized self-consistent steady-state forces remain, in
general, nonconservative. The example of Sec. V shows that
while screening can reduce the curl considerably, there still is
a nontrivial amount left over.

It is hoped that the general results in Eqs. �24� and �25�
will be of use to other researchers in investigating and ana-
lyzing current-induced generalized forces and the problem of
their �non-�conservative nature. An interesting question is
what happens to the screened curl in situations where strict
local charge neutrality is imposed on more and more atoms
and, specifically, in the limit where it is imposed on all infi-
nitely many atoms.3 This question, as well as dynamical
simulations of the atomic motion under self-consistent non-
conservative forces, is left for future work.

A further question for future research is what happens
beyond mean-field electron-electron interactions. Here we
merely observe that Sorbello’s original thought experiment,1

to argue that current-induced forces must be nonconserva-
tive, applies to noninteracting and interacting electrons alike.

Therefore, we do not expect our present conclusions to
change in a qualitative way when corrections to the mean-
field description are included.
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APPENDIX

Our task here is to relate the construction of Sec. III to the
usual Landauer-Büttiker picture, with semi-infinite leads.
This can be done by a limiting process15 as follows. It will be

convenient to partition ĤS as

ĤS = Ĥ0 + V̂ , �A1�

where

Ĥ0 = ĤC + �
�

Ĥ�, Ĥq = P̂qĤSP̂q, q = C,��� , �A2�

V̂ = �
�

�Ĥ�C + ĤC��, Ĥ�C = P̂�ĤSP̂C = ĤC�
† . �A3�

Here, we have assumed that the Hamiltonian ĤS does not
contain direct lead-to-lead couplings. Let us define

ĝS
��E� = 
�E � i�P̂S − Ĥ0�−1 = gC

��E� + �
�

g�
��E� ,

�A4�

where

ĝq
��E� = 
�E � i�P̂q − Ĥq�−1, q = C,��� . �A5�

Let us also define

d̂q�E� =
ĝq

−�E� − ĝq
+�E�

2�i
=



�
ĝq

+�E�P̂qĝq
−�E�, q = C,��� .

�A6�

Above, ĝq
��E� are the retarded and advanced Green’s func-

tions for component q coupled to its external probes but not

coupled to any other components and d̂q�E� is the density-
of-states operator for component q in that situation.

ĜS
��E� and ĝS

��E� are linked by the Dyson equation,

ĜS
��E� = ĝS

��E� + ĝS
��E�V̂ĜS

��E� = ĝS
��E� + ĜS

��E�V̂ĝS
��E� .

�A7�

With the aid of this equation and the above definitions, we
have

D̂q�E� = 
P̂S + ĜS
+�E�V̂�d̂q�E�
V̂ĜS

−�E� + P̂S�, q = C,��� .

�A8�

For the DM in C we then find

0.2 0.3 0.4 0.5 0.6 0.7 0.8
band filling

-2

-1

0

1

2

cu
rl

FIG. 3. �xy
nsc �solid line� and �xy

sc �dashed line�, in units of
�4eV /���H�2 /H2�, versus band filling, for the corner atom in the
geometry in Fig. 2.
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�̂C�E� = P̂C�̂�E�P̂C = ĜC
+�E��̂��E�ĜC

−�E� + 
P̂C

+ ĜC
+�E��̂+�E���̂0,C�E�
�̂−�E�ĜC

−�E� + P̂C� ,

�A9�

where

�̂��E� = �
�

f��E�ĤC�d̂��E�Ĥ�C, �A10�

ĜC
��E� = 
�E � i�P̂C − ĤC − �̂��E��−1, �A11�

�̂��E� = �
�

ĤC�ĝ�
��E�Ĥ�C, �A12�

�̂0,C�E� = fC�E�d̂C�E� . �A13�

Consider now the limit where the lead length becomes infi-
nite and  vanishes while always remaining much larger than
the typical electron energy-level spacing in the leads. Then
matrix elements of ĝ�

��E� between real-space basis states that
are a finite distance apart tend to those for a truly semi-

infinite lead. In this limit, further, d̂C�E� becomes d̂C�E�
=�C�C���E−EC��C�, where ��C�� are the eigenstates of ĤC,
with eigenenergies �EC�. Then Eq. �A9� turns into the ex-
pected result for a finite sample �C�, embedded between
semi-infinite electrodes.
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